

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

CONCEPTS FOR ADVANCED MATHEMATICS, C2

Practice Paper C2-A

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

Section A (36 marks)

1	The	The gradient of a curve is given by $\frac{dy}{dx} = 2 - 5x$.					
	Find	the equation of the curve given that it passes through the point $(0, 1)$.	[4]				
2	(i)	Write $\log_2 5 + \log_2 1.6$ as an integer.	[2]				
	(ii)	Solve the equation $2^x = 3$, giving your answer correct to 4 decimal places.	[3]				
3	On h Fred	On his 1 st birthday, John was given £5 by his Uncle Fred. On each succeeding birthday, U Fred gave a sum of money that was £3 more than the amount he gave on the last birthday					
	(i)	How much did Uncle Fred give John on his 8 th birthday?	[2]				
	(ii)	On what birthday did the gift from Uncle Fred result in the total sum given on all birthdays exceeding £200?	[4]				
4	Find the y	d the equation of the tangent to the curve $y = x^3 + 2x - 7$ at the point where it cuts y axis. [
5	(i)	Express $2\sin^2\theta + 3\cos\theta$ as a quadratic function of $\cos\theta$.	[1]				
	(ii)	Hence solve the equation $2\sin^2\theta + 3\cos\theta = 3$, giving all values of θ correct to the nearest degree in the range $0^\circ \le \theta \le 360^\circ$.	[4]				
6	The	angle of a sector of a circle is 2 radians and the length of the arc of the sector is 45cm	l .				
	Find						
	(i)	the radius of the circle,	[2]				
	(ii)	the area of the sector.	[2]				
7	The first two terms of a geometric series are 5 and 4. Find						
	(i)	the sum of the first 10 terms,	[2]				
	(ii)	the sum to infinity.	[1]				

8 In the triangle ABC, AB = 5 cm, AC = 6 cm and angle $BAC = 110^{\circ}$.

Find the length of the side BC.

Section B (36 marks)

9 The equation of a curve is given by $y = (x - 1)^2(x + 2)$.

- (i) Write $(x-1)^2(x+2)$ in the form $x^3 + px^2 + qx + r$ where p, q and r are to be determined. [2]
- (ii) Show that the curve $y = (x 1)^2(x + 2)$ has a maximum point when x = -1 and find the coordinates of the minimum point. [7]
- (iii) Sketch the curve $y = (x 1)^2(x + 2)$. [1]
- (iv) For what values of k does $(x-1)^2(x+2) = k$ have exactly one root. [3]
- 10 A function y = f(x) may be modelled by the equation $y = ax^{b}$.
 - (i) Show why, if this is so, then plotting logy against logx will produce a straight line graph. Explain how *a* and *b* may be determined experimentally from the graph. [3]
 - (ii) Values of x and y are given below. By plotting a graph of logy against logx, show that the model above is appropriate for this set of data and find values of a and b given that a is an integer and b can be written as a fraction with a denominator less than 10. [7]

x	2	3	4	5	6
у	4.6	5.0	5.3	5.5	5.7

(iii) Use your formula from part (ii) to estimate the value of y when x = 2.8. [2]

[5]

11 The cross-section of a brick wall built on horizontal ground is given, for $0 \le x \le 6$, by the following function

Units are metres.

(i)	Show that the highest point on the wall is 1.5 metres above the ground.					

(ii) Find the area of the cross-section of the wall. [7]